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Abstract— In this paper, we propose a Subproblem-dependent
Heuristic (SH) for MOEA/D to deal with the Deployment and
Power Assignment Problem (DPAP) in Wireless Sensor Networks
(WSNs). The goal of the DPAP is to assign locations and transmit
power levels to sensor nodes for maximizing the network coverage
and lifetime objectives. In our method, the DPAP is decomposed
into a number of scalar subproblems. The subproblems are
optimized in parallel, by using neighborhood information and
problem-specific knowledge. The proposed SH probabilistically
alternates between two DPAP-specific strategies based on the
subproblems objective preferences. Simulation results have shown
that MOEA/D performs better than NSGA-II in several WSN
instances.

I. I NTRODUCTION

Most of the research in Wireless Sensor Network (WSN)
topology design focuses on deciding optimal (a) locations
(deployment [1]) and (b) transmit power levels (power as-
signment [2]) of the sensor nodes to be deployed in an area
of interest. Several approaches have been proposed for the
deployment and power assignment problems in WSNs, with
major goal on maximizing (i) the coverage [3], or (ii) the
lifetime [4] objective, respectively. However, few attempts
have been made for simultaneously tackling both (a) and (b)
decision variables, considering both (i) and (ii) objectives [5].
Even though, the latter approaches optimize the objectives
individually, or by combining them into a single objective,
or constraining one and optimizing the other, which often
results on ignoring and losing “better” solutions. The coverage
and lifetime of WSNs are conflicting objectives and warrant a
trade-off. Hence, we have recently proposed the Deployment
and Power Assignment Problem (DPAP) [6] in WSNs, as a
Multiobjective Optimization Problem (MOP).

There are many methods for dealing with MOPs in the lit-
erature [7], with the Multi-Objective Evolutionary Algorithms
(MOEAs) being a promising approach. General MOEAs,
usually tackle a MOP as a “black box” [8], i.e. without any
problem specific knowledge. This might be a drawback for
MOEAs when dealing with real life problems (such as DPAP)
having undesirable effects, e.g. force the evolutionary process
into unnecessary searches, negatively affecting their perfor-
mance. Thus, the incorporation of problem specific knowledge
in MOEAs [9], to direct the search into promising areas of
the search space, can be proven beneficially [10]. However,

designing problem specific heuristics for a MOP as a whole is
difficult. The Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) [11] overcomes this difficulty
by decomposing the MOP into many scalar subproblems
and optimizing them simultaneously, by using neighborhood
information and single-objective techniques. The difficulty,
however, on adding knowledge on a decompositional MOEA is
that the subproblems have different objective preferences, re-
quire different treatment and have to be solved simultaneously,
in a single run. Therefore, the problem-specific heuristics
should adapt to the requirements and objective preference of
each subproblem dynamically, during the evolution.

In [6], we have briefly introduced our problem specific
MOEA/D approach. This work concentrates on the improve-
ment part of MOEA/D and proposes two improvement strate-
gies, each focuses on one objective of DPAP. A Subproblem-
dependent Heuristic (SH) is then adopted, to probabilistically
apply the two improvement strategies to the solution of
each subproblem and to strategically direct the search into
promising areas of the search space. The goal is to improve
the MOEA/D’s performance in terms of diversity and quality
of the PF for the DPAP. In Section II, we briefly introduce the
MO-DPAP. Section III analyzes the problem by classifying the
non-dominated solutions based on their objective preferences.
The MOEA/D is briefly introduced in Section IV, followed
by the proposed SH in Section V. The results of Section VI
show an increase on the performance of MOEA/D and its
superiority against the widely used Non-dominated Sorting
Genetic Algorithm-II (NSGA-II [12]). The paper ends with
some concluding remarks.

II. PROBLEM DEFINITION

A. System Model

Consider a 2-D static WSN formed by: a rectangular sensing
areaA, N homogeneous sensors and a static sinkH with
unlimited energy, placed at the center ofA. The sensors are
responsible to monitor and periodically report an event of
interest toH . Each sensori communicates directly or via
multiple hops through nearby sensors withH , through the
path loss communication model as in [13]. In this model, the
transmit power level that should be assigned to a sensori to
reach a sensorj is Pi = β × dα

ij , whereα ∈ [2, 6] is the path



loss exponent andβ = 1 is the transmission quality parameter.
The energy loss due to channel transmission isdα

ij , dij is the
Euclidean distance between sensorsi, j and Ri

c = dij is i’s
communication range. The calculated power assignments are
considered static for the whole network’s lifetime. The residual
energy of sensori, at timet, is calculated as follows:

Ei(t) = Ei(t − 1) − [(ri(t) + 1) × Pi × amp] (1)

whereri(t) + 1 is the total traffic load that sensori forwards
towards H at t (ri(t) is the traffic load thati relays and
“+1” is the data packet generated byi to forward its own
data information) andamp is the power amplifier’s energy
consumption. We assume that, the sensor nodes communicate
through long transmission distances and therefore the transmit
power consumption is a major factor on their total energy
consumption [13]. Therefore, the energy consumed by the
transceiver electronics, as well as, for reception and generation
of data are considered negligible and ignored.

For sensing purposes and simplicity, we assume thatA is
composed by rectangular grids of identical dimensions cen-
tered at(x′, y′) and we adopted a “binary” sensing model [3].
Namely, a grid at(x′, y′) is covered, denoted byg(x′, y′) =
1, if it falls within a sensor’s sensing rangeRs, otherwise
g(x′, y′) = 0. We consider unit-size grids, which are several
times smaller thanRs, for a more accurate placement [3].

B. Problem formulation

The DPAP can be formulated as a MOP,
Given:

• A: 2-D plane of area sizex × y.
• N : number of sensors to be deployed inA.
• E: initial power supply, the same for all sensors.
• Rs: sensing range, the same for all sensors.

Decision variables:
• Lj : the location of sensorj.
• Pj : the transmission power level of sensorj.

Objectives: Maximize coverageCv(X) and lifetimeL(X) of
network designX :

The network coverageCv(X) is defined as the percentage
of the covered grids over the total grids ofA and is evaluated
as follows:

Cv(X) = [

x
∑

x′=0

y
∑

y′=0

g(x′, y′)]/(x × y) (2)

where,x × y is the total grids ofA and

g(x′, y′) =

{

1 if ∃j ∈ {1, ..., N}, d(xj ,yj),(x′,y′) ≤ Rs

0 otherwise
is the monitoring status of the grid centered at(x′, y′).

The network lifetime is defined as the duration from the
deployment of the network to the cyclet a sensorj depletes
its energy supply,E. The lifetime objectiveL(X) is evaluated
as follows:

Algorithm: Lifetime Evaluation
Step 0: Set t := 1; Ej(0) := E, ∀j ∈ {1, ..., N};

Step 1: For all sensorsj at each time intervalt do
Step 1.1:UpdateEj(t) according to Eq. 1;
Step 1.2:Assign each incoming link of sensorj a

weight equal toEj(t);
Step 1.3:Calculate the shortest path fromj to H ;

Step 2: If ∃ j ∈ {1, ..., N} such thatEj(t) = 0 then stop
and set:

L(X) := t; (3)

Else t = t + 1, go to step 1;

The same algorithm can be easily modified to con-
sider different energy models and routing algorithms (e.g.
geographical-based [14] routing algorithms).

(a) The PF of DPAP (b) Various pareto optimal solutions
of the PF

Fig. 1. Classifying the optimal network designs in DPAP

III. PROBLEM ANALYSIS

In multi-objective DPAP, there is not a unique network
design, which can satisfy all objectives at the same time. Each
design provides a preference to a particular objective. The
Pareto optimal network designs that are close in the objective
space should have similarities with each other in the decision
space. In this work, we have identified two extreme optimal
network designsXA and XB, which are dedicated on one
objective each. Thereinafter, the intermediate solutionscan be
designed based on some network concepts and their position
in the objective space (i.e. objective preference). The extreme
Pareto optimal solutions and the set of intermediate solutions
(Figure 1(a)) can be characterized as follows:

• Solution XA: Dedicated on increasing the network’s life-
time performance fully or highly ignoring the network’s
coverage quality.

• Solution XB: Dedicated on increasing the network’s
coverage quality, fully or highly ignoring the network’s
lifetime performance.

• Set of intermediate solutions:A set of solutions pro-
viding the trade offs between the network lifetime and
coverage objectives.

The optimal solutionXA provides the maximum lifetime
among all the solutions in the PF,

L(XA) =
E

dα
min × amp

,



wheredmin is a controllable parameter, indicating the mini-
mum distance allowed between a sensor node andH . Thus, a
dense deployment of all sensor nodes aroundH with minimum
transmission distancesRi

c = dmin and direct communications
with H (resulting onri(t) = 0) is desirable. Note that,L(XA)
is used for normalizing the lifetime objective for the rest of this
work, with the value 1 representing the best possible fitness.
Moreover, sinceXA is dedicated onL(XA), the C(XA)
should be the minimum among all Pareto optimal solutions in
the PF. It is desirable, however, to achieve the highest possible
Cv(XA), which can be equal to

Cv(XA) = A′/(x × y),

whereA′ ≈ (2 × (Rs + dmin))2.
The optimal solutionXB provides the maximum coverage

among all the solutions in the PF.Cv(XB) highly depends on
N . In this paper, we assume a spread like deployment, hence,
let N ≤ (x×y)

(2Rs)2 be small. Therefore, the sensor nodes should
be deployed regularly, with a fixed distance2Rs between
each other andH , avoiding any sensing range overlaps. The
maximum coverage can be calculated as follows:

Cv(XB) =
N × πR2

s

(x × y)
.

Similarly to XA, achieving a network designXB with the
highestL(XB) is always desirable,

L(XB) =
E

k × (N/4) × (2Rs)α × amp
,

wherek× (N/4)× (2Rs)
α × amp is the energy consumption

of each sensori that is directly connected toH at eacht, and
N/4×k is a fixed minimum number of packets of sizek (i.e.
the traffic load) that should be burden by each sensor nodei,
assuming a regular, symmetrical deployment.

The goal of DPAP, however, is to provide the interested
users with a diverse set of network design choices, giving the
trade offs between the extreme optimal network designsXA

andXB. However, the procedure of designing the intermediate
topologies is complicated, since there is not a scalar method
that can design all of them, in a single run. In the following,we
introduce some general concepts for designing non-dominated
solutions in different areas (e.g. a,b, and c in Figure 1(b))of
the intermediate set of solutions (Figure 1(a)):

• Solution Xa: favors a high network lifetime. Hence, the
focus is to provide dense network designs by placing
the sensor nodes with near to minimum transmission
distances close toH . This, however, leads to high sensing
range overlaps and poor coverage.

• Solution Xc: favors a high network coverage. Therefore,
the focus is to provide spread network designs by placing
the sensor nodes with high transmission ranges and low
sensing range overlaps between (a) the sensor nodes and
(b) the sensor nodes and the area’s boundaries. This,
however, leads to a high energy consumption of each
sensor node at eacht, which results to a poor lifetime.

Note that, it is expected that the interrelation of solutions
Xa and Xc with the foresaid network concepts, “fades”
as they get closer to the center of the PF. Thereinafter, a
combination of these concepts could provide a balance on the
DPAP’s objectives as follows:

• Solution Xb: The sensor nodes are connected in such
a way that their transmission power decrease/increase,
and the sensing range overlaps increase/decrease, as they
get closer toH , according to a slight preference on the
lifetime or coverage objective, respectively.

Note that, whenN > (x×y)
(2Rs)2 is high, the sensor nodes can

be deployed more densely, to provide aCv(XB) = 1 by
allowing some sensing range overlaps, e.g. with a fixed2Rs√

2
distance between each other and the area’s boundaries. There
are also scalar techniques that provide a higherL(XB) by
utilizing a higherN , such as Chen’s et al. approach [5].

IV. B RIEF INTRODUCTION ONMOEA/D

The MOP can be decomposed intom subproblems by
adopting any technique for aggregating functions [11], e.g.
the Weighted Sum Approach used here. Letλi be a weight
that its associated subproblemi can be defined as:

max gi(X i|λi) = λiL(X i) + (1 − λi)Cv(X i)

Initially, the Internal Population,IP , which stores the best
solutions found for each subproblem during the search, is
randomly initialized. The genetic operators (i.e. selection,
crossover and mutation) are then invoked onIP for offspring
reproduction,X i, for each subproblemi, wherei = 1 to m.
Moreover, problem specific heuristics are applied to improve
each X i and obtainY i. The update phase of MOEA/D
is processed in three steps. (1) UpdateIP , IP/{X i} and
IP ∪ {Y i} if gi(Y

i|λi) > gi(X i|λi), otherwiseX i remains
in IP . (2) Update the neighborhood ofY i, i.e. the solutions
of the T closest subproblems ofi in terms of their weights
{λ1, · · · , λm} are updated. Ifgj(Y i|λj) > gj(Xj|λj), then
IP/{Xj} andIP∪{Y i}, otherwiseXj remains inIP , where
j ∈ {1, ..., T}. (2) Update the External Population(EP ),
which stores all the non-dominated solutions found so far
during the search.EP = EP ∪ {Y i} if Y i is not dominated
by any solutionXj ∈ EP andEP = EP/{Xj}, for all Xj

dominated byY i. The search stops after a pre-defined number
of generations,genmax.

One of the main advantages of MOEA/D is that, appropriate
scalar strategies can be adapted specifically to each subprob-
lem i. Traditionally, it is hard to design an operator and/or
heuristic to benefit all subproblems, since they have different
objective preferences and they have to be solved simultane-
ously, in a single run. In order to overcome this difficulty, we
have developed problem specific operators [6] and heuristics
rising by each subproblemi’s preference (weight coefficient
λi) and adapted to its requirements. Theλi parameter is
used as a guide to the operators and heuristics for adjusting
the degree of coverage and lifetime, and therefore designing
different preference WSNs. MOEA/D proceeds as follows:



Input: • network parameters (A, N , E, Rs);
• m : population size and number of subproblems;
• T : neighborhood size;
• uniform spread of weightsλ1, ..., λm;
• the maximum number of generations,genmax;

Output: • the external population,EP .
Step 0-Setup:SetEP := ∅; gen := 0; IP := ∅;
Step 1-Decomposition: Initialize m subproblems, i.e. max

gi(Zi|λi), for i = 1, ..., m.
Step 2-Initialization: Randomly generate an initial internal

populationIP = {Z1, · · · , Zm};
Step 3: For each subproblemi = 1 to m do

Step 3.1-Genetic Operators:Generate a new so-
lution X i by using selection, crossover and
mutation operators.

Step 3.2-Improvement:Apply a problem specific
repair/improvement heuristic onX i to pro-
duceY i.

Step 3.3-Update Populations: Update IP , EP
and theT closest neighbors of subproblem
i with Y i.

Step 4-Stopping criterion:If stopping criterion is satisfied,
i.e. gen = genmax, then stop and outputEP ,
otherwisegen = gen + 1, go to Step 3.

We refer interested readers to [11] for details. In this
paper, the focus is on the improvement Subproblem-dependent
Heuristic (SH) for incorporating problem specific knowledge
to MOEA/D and producing near optimal network designs for
the DPAP in WSNs.

V. THE SUBPROBLEM-DEPENDENTHEURISTIC (SH)

The SH is composed by two simple single-objective strate-
gies. Each strategy is based on a network concept related
to an objective of DPAP and provides different treatment to
the solutions of each subproblemi. ParticularlyImpL(X i)
benefitsL(X i) and ImpCv(X i) benefitsCv(X i). The λi

coefficient of a particulari shows a preference on one of
the two objectives (except in the case whereλi = 0.5).
Therefore, we can probabilistically adapt a problem specific
strategy to selectively improve a solutionX i. This is achieved
by uniformly randomly generating a numberrand ∈ [0, 1],
comparing it with theλi weight coefficient of each subproblem
i and applying an improvement strategy accordingly.

Algorithm 1 The Subproblem-dependent Heuristic (SH)

Input: Xi, λi

Output:Y i

Step 1: Run the energy-efficient GRP on solutionXi.
Step 2: Generate a uniform random numberrand ∈ [0, 1].

Step 2.1If rand < λi then

Y i ← ImpL(Xi)
Step 2.2Else

Y i ← ImpCv(Xi)

The proposed SH, illustrated in Figure 2, works as in
Algorithm 1. Note that, a newrand is obtained in each
generation for each subproblem, hence, the intermediate sub-
problems, which prefer a balance between the two objectives
(e.g. λi = 0.5) have a high probability to be tackled by
both improvement strategies, in different generations, and to
design balanced topologies, such as solutionXb. Besides,
subproblems with high or lowλ coefficient still have some
probability to be improved byImpCv(X i) and ImpL(X i),
respectively. In the following we analyze the two improvement
strategies separately.

Fig. 2. The main concept of the Subproblem-dependent Heuristic (SH)

Improve lifetime: Following the analysis of section III, the
ImpL(X i) improvement strategy is introduced. The goal of
ImpL(X i) is to densely deploy the sensor nodes aroundH
and decrease their transmit power levels as they get closer to
H . This method mainly favors the solutions of areas a and b.

A sensor nodej at locationLj is moving towards its one-
hop neighborh a distanceshift, which depends on:

• the current energy consumption of sensorj, i.e. (rj(t) +
1) × Pj × amp.

• the energy consumption of sensork at locationLk, which
considers sensorj as its one-hop neighbor node, i.e.
(rk(t) + 1) × Pk × amp

such that sensorsj andk deplete their energy supply approx-
imately at the same time.

Let rj andrk be the average traffic load of sensorsj andk
during the network’s lifetime, respectively, anda = 2. Firstly,
the required distanced′jh between sensorsj andh, such that
sensorsj andk deplete their energy supply approximately at
the same time, is calculated as follows:

d′jh =

√

d2
kj × amp × rk(t)

amp × rj(t)
(4)

Consequently, the shift that sensorj should move towardsh
is equal to:

shift = djh − d′jh (5)

Thereinafter, the new location of sensorj is:

L′
j = Lj + shift × (Lh − Lj)/djh (6)



The transmit power levels of sensorj andk are then updated
as follows:

P ′
j =

√

(x′
j − xh)2 + (y′

j − yh)2

P ′
k =

√

(x′
j − xk)2 + (y′

j − yk)2
(7)

where should satisfyP ′
j × amp × rj = P ′

k × amp × rk and
d′jh < djh such thatP ′

j < Pj .
The ImpL(X i) strategy works as in Algorithm 2. The

procedure ofImpL(X i), as well as, some special cases are
illustrated in Figure 3. Note that, whenj is directly connected
to H , thenh = H and whenj is at the end of the network,
then the shift is fixed and equals tod = Rh

c .

Algorithm 2 ImpL(X i)

Input: SolutionXi;
Output: Improved solutionY i;

For j = 1 to N do
Step 1: Calculate the distanced′

jh using Eq. 4;
Step 2: Subtractd′

jh from the initial distancedjh be-
tween j and h to calculate theshift towards
sensorh, as in Eq. 5;

Step 3: Calculate and set the new locationL′

j to sensor
j using Eq. 6;

Step 4: Update the transmit power level ofj andk using
Eq. 7;

(a) Case 1 - Sensor connected to sink

(b) Case 2 - Sensor connected to another sensor

(c) Case 3 - Sensor at the network’s boundaries

Fig. 3. An example ofImpL(Xi)

Improve coverage:The improvement strategy that benefits
the coverage objective (i.e.ImpCv(X i)) follows the analysis
of Section III as well. This particular strategy, however, mainly
favors solutions such asXb and Xc of the objective space,
since ImpCv(X i) decreases (a) the sensing range overlap
between the sensor nodes by increasing the distance between
them and (d) the sensing range overlaps between the sensor
nodes and the area’s boundaries, as required by the concepts
introduced in Section III forXb, Xc.

In ImpL(X i), a sensor nodek at location(Lk) is shifted
backwards from its one-hop neighbor nodej a distance
shift, to decrease the sensing range overlap between them.
The sensing range overlap between sensorsk, j denoted as
Ao(k, j), is equal to:

Ao(k, j) = R2
s(q − sin(q))

whereq = 2 × acos(dkj/2Rs). Hence, by increasingdkj the
Ao(k, j) betweenk and j decreases. Note that, fordkj =
2 × Rs the Ao(k, j) = 0.

However,ImpCv(X i) may force all subproblemsi with
low λi to converge into a single solution, i.e.XB giving
Cv(XB). This is undesirable, since we need the objectives
trade offs, i.e the solutions between the extreme solutionsXA,
XB. Hence, the new position of sensork should be calculated
in such a way that the sensing range overlap betweenk and
j is decreased and the current network lifetime is maintained.
Let rk, rj be the average relay data information of sensorsk
andj respectively anda = 2.

Fig. 4. An example of the first part ofImpCv(Xi)

Firstly, we calculate the required distance,d′kj , such that
sensorsk andj deplete their energy supply approximately at
the same time:

d′kj =

√

Pk × amp × rk

amp × rj

(8)

Then, we calculate the shift that sensork moves backward
from j:

shift = d′kj − dkj (9)

Consequently, the new location of sensork is:

L′
k = (Lk × d′k,j − shift× Lj)/(d′k,j − shift) (10)

The new transmission power level of sensork is:

P ′
k =

√

(x′
k − xj)2 + (y′

k − yj)2 (11)

The final location and power assignment of sensork should
satisfyPj × amp× rj = P ′

k × amp× ri andd′kj > dkj such
that Ao(kj)′ < Ao(kj).

• When sensork has many one-hop neighbor nodes, then
j is the one with the smallestdkj and consequently the
largestAo(kj).

This first part ofImpCv(X i) is illustrated in Figure 4.



Thereinafter,ImpCv(X i) decreases the sensing range over-
laps between the sensor nodes and the area’s boundaries.
Assuming that the area is a rectangle, there are three different
cases where a sensor violates the area’s boundaries:

Case #1:Violation on x-axis: (a) left or (b) right bound.
Case #2:Violation on y-axis: (a) lower or (b)upper bound.
Case #3: Violation on both axes: (a) lower/left, (b)
lower/right, (c) upper/left, (d) upper/right.

Fig. 5. The cases of the boundaries violations and the relocation of each
case in the second part ofImpCv(Xi)

If a sensork in a location Lk = (xk, yk) violates any
of the Cases #1,#2,#3 is redeployed toL′

k as in Figure 5.
Thereinafter, sensork is assigned aP i

k such that it reaches its
closest neighbor.ImpCv(X i) works as in Algorithm 3.

Algorithm 3 ImpCv(X i)

Input: SolutionXi;
Output: Improved solutionY i;

For k = 1 to N do
Step 1: If j is k’s next-hop neighbor andj 6= H then

Step 1.1:Calculate the distanced′

kj by using Eq. 8;
Step 1.2:Calculate the backwardshift by using Eq. 9;
Step 1.3:Use Eq. 10 to findL′

k of sensork and update
P i

k as in Eq. 11;
Step 2: If k violates any of the Cases #1,#2,#3 then

Step 2.1:Setk into a new locationL′

k as in Figure 5;
Step 2.2:UpdateP i

k, such that it reaches its closest one-
hop neighbor.

VI. SIMULATION RESULTS AND DISCUSSION

The goal of our simulation studies is: 1) to demonstrate the
effectiveness of our problem specific improvement strategies
(i.e. ImpL and ImpCv) and to empirically show how the
proposed SH takes advantage of the foresaid strategies and
adapts to the subproblems requirements, 2) to show that the SH
increases the performance of the conventional MOEA/D and
3) to test the strength of the improved MOEA/D against the
NSGA-II in various network instances, giving the objectives
trade offs and a variety of network design choices.

Table I shows various network instances in a22 factorial
design [15]. Network Instances (NIn) 1,2 and 3,4 are of
different As and same density (i.e. N/A) and NIn 1,3 and
2,4 are with different densities in the sameA. Additionally, in
all simulations we have used the following network parameter
settings:a = 2, Rs = 10m, E = 5J , amp = 100pJ/bit/m2

[14], maxRc = 20m, dmin = 10m; and the following MOEA
settings:m = 120, crate = 1, mrate = 0.1, st = 10 and
genmax = 250. MOEA/D also considers aT = 2.

TABLE I

NETWORK INSTANCES

Network Instances A (m2) Density (N/A)
NIn1 10000 .0013 (N=13)
NIn2 40000 .0013 (N=52)
NIn3 10000 .005 (N=50)
NIn4 40000 .005 (N=200)

Figure 6 illustrates the results of MOEA/D adopting each
improvement strategy separately and simultaneously through
the SH. As can be seen, when the density of the network
is low, the MOEA/D w/ImpCv provides a more diverse set
of non-dominated solutions. In addition, when the network
size is small, MOEA/D w/ImpCv obtains better results than
MOEA/D w/ImpL for solutions of areasb, c and provides
a better approximation towards the extreme solutionXB.
On the other hand, MOEA/D w/ImpL outperforms MOEA/D
w/ImpCv in areasa, b and obtains a better approximation
towards the extreme solutionXA. Hence, it is difficult to say
which heuristic is the best with respect all NIns. MOEA/D-
SH obtaining solutions from both strategies PFs, provides a
balanced diverse set of high quality solutions in all areas of
the objective space and the best approximation towards both
extreme solutionsXA andXB in all NIns.

Thereinafter, Figure 7 shows the contribution of the
subproblem-dependent heuristic. MOEA/D-SH increases the
performance of MOEA/D, especially on the subproblems
that require solutions aroundXb, giving a similar or better
approximation towards the extreme solutionsXA andXB, in
all network instances. For the networks with low density (i.e.
NIn1 and NIn3), MOEA/D-SH provides an average coverage
increase of 0.5% for the solutions in areasa and c with the
same lifetime quality, and a simultaneous average increase
of 1.5% lifetime and 1% coverage for those in areab. For
the network instances with high density, MOEA/D-SH obtains
non-dominated solutions of about 1.5% more average lifetime
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Fig. 6. MOEA/D with ImpL, ImpCv and SH in NI1
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Fig. 7. MOEA/D with and without the SH in NI1
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Fig. 8. MOEA/D vs. NSGAII in NI1-4

and the same coverage for areaa, and about 1% more coverage
and the same lifetime for areac. Moreover, it provides a
simultaneous increase of 1.5% lifetime and 2% coverage,
in average, for the solutions in areab, with respect those
obtained by MOEA/D. Moreover, MOEA/D-SH obtains a
better approximation towardsXA and a similar approximation
towardsXB in all NIns.

For comparing the MOEAs, we have adopted various per-
formance metrics that are usually employed for comparing
sets of solutions obtained by different algorithms. The metrics
are theC(A, B) metric [12], which measures the solutions
in an algorithm A’s PF dominated by the solutions in an
algorithm B’s PF (i.e. the smallerC(A, B) is, the better A
is), the ∆(A) metric [12], which shows the diversity of the
PF obtained by an algorithm A, i.e. the spread of the network
design choices along the PF.∆(A) = 0 is the maximum,
which means that the solutions are evenly spread along A’s

PF. A straightforward comparison metric between two sets
of non-dominated solutions is the number of Non-Dominated
Solutions NDS(A), i.e. the volume of network design choices,
since in a real life problem (such as DPAP) is very difficult
to obtain many NDS. Hence, a high NDS is desirable for
increasing the decision maker’s choices. Thus, the combination
of the number of NDS with the C-metric and∆-metric should
be an adequate set of metrics to judge if an algorithm has
obtained a large, diverse set of high quality solutions.

Figure 8 and Table II illustrates the superiority of the
proposed MOEA/D method against NSGA-II. MOEA/D out-
performs NSGA-II in all network instances in terms of quality
of solution in the PF, number of NDS and in terms of diversity
in dense network topologies. In network topologies with low
density, NSGA-II provides a more uniform spread of solutions.
Even though, the width of the PF covered by MOEA/D is
more than the one obtained by NSGA-II, since NSGA-II lacks



TABLE II

MOEA/D VS. NSGAII NI1-4, AS8

∆-metric ∆(MOEA/D) ∆(NSGAII)
NIn1: 0.9867 0.8410
NIn2: 0.9869 0.8375
NIn3: 0.7271 0.7877
NIn4: 0.7262 0.8219

Average: 0.8567 0.8220
NDS-metric: NDS(MOEA/D) NDS(NSGAII)

NIn1: 13 8
NIn2: 15 10
NIn3: 22 17
NIn4: 29 21

Average: 19.7500 14.0000

C-metric: C(MOEA/D,NSGAII) C(NSGAII,MOEAD)
NIn1 0.0000 1.0000
NIn2 0.0000 0.7000
NIn3 0.0000 1.0000
NIn4 0.0000 1.0000

Average: 0.0000 0.9250

on obtaining solutions aroundXc and obtains few solutions
around Xb. MOEA/D dominates 92.50% of the solutions
obtained by NSGA-II in average of all network instances,
giving six additional non-dominated network design choices,
in average. NSGA-II obtains a slightly better average diversity
than MOEA/D, which sacrifices some of the diversity in the
PF for the sake of better quality.

Table III summarizes the objective values of the optimal
network designsXA andXB, which are analytically measured
according to section III, and their approximation, i.e. the
objective values of the extreme solutionsX1 andXm obtained
by each MOEA, for each network instance. The results show
that MOEA/D approximates the optimal network designs more
efficiently than NSGA-II. Another conclusion that can be
empirically drawn is that, MOEA/D is not sensitive on the
WSN’s area size or density, giving similar results in each case.
MOEA/D obtains aL(X1) = 100%, Cv(X1) = 15.74%,
L(X1) = 100%, Cv(X1) = 15.72% and L(X1) = 100%,
Cv(X1) = 3.9%, L(X1) = 100%, Cv(X1) = 3.77% for the
same 10000m2 and 40000m2 area sizes, respectively, with
different densities. Moreover, MOEA/D provides aL(Xm) =
5%, Cv(Xm) = 39.03%, L(Xm) = 2%, Cv(Xm) = 32.39%
and L(Xm) = 5.5%, Cv(Xm) = 93.32%, L(Xm) = 1%,
Cv(Xm) = 94.27% for the same 0.0013 and 0.005 densities,
respectively, in different area sizes.

VII. C ONCLUSIONS

In this work, a Subproblem-dependent Heuristic (SH) is
proposed and successfully applied to MOEA/D for tackling
the multi-objective DPAP in WSNs. Initially, the DPAP is
decomposed and analyzed based on the subproblems objective
preferences. Then, the SH is introduced, i.e. a probabilistic
mixture of two DPAP-specific improvement strategies, each
favoring one objective. Finally, simulation results have shown
that the hybridization of the proposed SH with MOEA/D ob-
tains better results than NSGA-II. A Generalized Subproblem-
dependent Heuristic (GSH) is currently under investigation to

TABLE III

ANALYTICAL SOLUTIONS XA AND XB AND THEIR APPROXIMATION BY

THE EXTREME SOLUTIONSX1 AND Xm OBTAINED BY MOEA/D AND

NSGAII

Lifetime Coverage Lifetime Coverage
NIn Method XA\X1 XA\X1 XB\Xm XB\Xm

Analytical 1 0.16 0.00003 0.408
1 MOEA/D 1 0.1574 0.05 0.3903

NSGAII 1 0.097 0.25 0.1793

Analytical 1 0.04 7.69e−5 0.3926
2 MOEA/D 1 0.039 0.02 0.3239

NSGAII 1 0.0272 0.125 0.05

Analytical 1 0.16 8e−5 1
3 MOEA/D 1 0.1572 0.055 0.9332

NSGAII 1 0.1118 0.045 0.4221

Analytical 1 0.04 2e−5 1
4 MOEA/D 1 0.0377 0.01 0.9427

NSGAII 1 0.0262 0.04 0.131

deal with a constrained multiobjective DPAP in WSNs.
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